Math, asked by ShowmodipRoy, 3 months ago

If 2x=3y=6-z, prove that 1/x+1/y+1/z =0​

Answers

Answered by mathdude500
5

Correct Statement is

 \sf \: If \:  {2}^{x}  =  {3}^{y} =  {6}^{ - z}, \: prove \: that \: \dfrac{1}{x} + \dfrac{1}{y}  + \dfrac{1}{z}  = 0

Answer

Identities Used :-

 \boxed{ \red{ \sf \: If \:  {x}^{y}  = a,  \: then \: x =  {\bigg(a \bigg)}^{\dfrac{1}{y} }}}

 \boxed{ \red{ \sf \:  {a}^{x}  =  {a}^{y} \:   \:  \: then \:  \: x \:  =  \: y}}

Step by step solution

\rm :\longmapsto\:Let \:  \: {2}^{x}  =  {3}^{y} =  {6}^{ - z} = k

\rm :\implies\: {2}^{x} = k \:  \implies \: 2 =  { \bigg(k \bigg)}^{ \dfrac{1}{x}}   -  -  - (1)

↝ Aɢᴀɪɴ,

\rm :\implies\: {3}^{y} = k \:  \implies \: 3 =  {\bigg(k \bigg)}^{ \dfrac{1}{y}}   -  -  - (2)

↝ Aɢᴀɪɴ,

\rm :\implies\: {6}^{ - z} = k \:  \implies \: 6 =  {\bigg(k \bigg)}^{ \dfrac{ - 1}{z}}   -  -  - (3)

↝ Now,

\rm :\longmapsto\: 6 =  {\bigg(k \bigg)}^{ \dfrac{ - 1}{z}}

\rm :\longmapsto\: 2 \times 3 =  {\bigg(k \bigg)}^{ \dfrac{ - 1}{z}}

\rm :\longmapsto\:  {\bigg(k \bigg)}^{\dfrac{1}{x} } \times  {\bigg(k \bigg)}^{\dfrac{1}{y} }  =  {\bigg(k \bigg)}^{ \dfrac{ - 1}{z}}

\rm :\longmapsto\: {\bigg(k \bigg)}^{\dfrac{1}{x}  + \dfrac{1}{y} }  =  {\bigg(k \bigg)}^{\dfrac{ - 1}{z} }

\rm :\implies\:\dfrac{1}{x}  + \dfrac{1}{y}  = \dfrac{ - 1}{z}

\bf :\implies\:\dfrac{1}{x}  + \dfrac{1}{y} + \dfrac{1}{z}  = 0

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\red{ {x}^{0} = 1}}}}} \\ \end{gathered}

Similar questions