Math, asked by greeshma351, 3 months ago

if 2x+3y=7 and xy=2,find 8xcube +27ycube​

Answers

Answered by anindyaadhikari13
6

Required Answer:-

Given:

 \begin{cases} \sf 2x + 3y = 7 \\ \sf xy = 2 \end{cases}

To Find:

  • 8x³ + 27y³ = ?

Solution:

Given that,

\sf \implies 2x + 3y = 7

Cubing both sides, we get,

\sf \implies (2x + 3y)^{3}  =  {7}^{3}

Using identity (a + b)³ = a³ + b³ + 3ab(a + b), we get,

\sf \implies 8 {x}^{3} + 27 {y}^{3}    + 3 \times 2x \times 3y(2x + 3y)=  {7}^{3}

\sf \implies 8 {x}^{3} + 27 {y}^{3}    + 18xy(2x + 3y)= 343

Substituting the values of xy and 2x + 3y, we get,

\sf \implies 8 {x}^{3} + 27 {y}^{3}    + 18 \times 2 \times 7= 343

\sf \implies 8 {x}^{3} + 27 {y}^{3}    + 36 \times 7= 343

\sf \implies 8 {x}^{3} + 27 {y}^{3}    =7 \times 49 - 7 \times 36

\sf \implies 8 {x}^{3} + 27 {y}^{3}    =7 \times( 49 -36)

\sf \implies 8 {x}^{3} + 27 {y}^{3}    =7 \times13

\sf \implies 8 {x}^{3} + 27 {y}^{3}     = 91

Hence, the value of 8x³ + 27y³ is 91.

Answer:

  • 8x³ + 27y³ = 91

More Identities to know:

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)² = (a - b)² + 4ab
  • (a - b)² = (a + b)² - 4ab
  • (a + b)² + (a - b)² = 2(a² + b²)
  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions