Math, asked by brainlyextra, 7 hours ago

If (2x-4)^12=[(4)²]^6 , find x​

Answers

Answered by varadad25
3

Answer:

\displaystyle{\boxed{\red{\sf\:x\:=\:4\:}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:(\:2x\:-\:4\:)^{12}\:=\:[\:(\:4\:)^2\:]^6}

We have to find the value of x.

Now,

\displaystyle{\sf\:(\:2x\:-\:4\:)^{12}\:=\:[\:(\:4\:)^2\:]^6}

\displaystyle{\implies\sf\:(\:2x\:-\:4\:)^{12}\:=\:(\:4\:)^{2\:\times\:6}\:\qquad\cdots[\:(\:a^m\:)^n\:=\:a^{m\:\times\:n}\:]}

\displaystyle{\implies\sf\:(\:2x\:-\:4\:)^{12}\:=\:4^{12}}

Taking log to the base 4 on both sides, we get,

\displaystyle{\implies\sf\:\log_4\:(\:2x\:-\:4\:)^{12}\:=\:\log_4\:(\:4^{12}\:)}

We know that,

\displaystyle{\pink{\sf\:\log_b\:(\:b^k\:)\:=\:k}}

\displaystyle{\implies\sf\:\log_4\:(\:2x\:-\:4\:)^{12}\:=\:12}

We know that,

\displaystyle{\pink{\sf\:\log_b\:(\:a^k\:)\:=\:k\:\log_b\:(\:a\:)}}

\displaystyle{\implies\sf\:12\:\log_4\:(\:2x\:-\:4\:)\:=\:12}

\displaystyle{\implies\sf\:\log_4\:(\:2x\:-\:4\:)\:=\:\cancel{\dfrac{12}{12}}}

\displaystyle{\implies\sf\:\log_4\:(\:2x\:-\:4\:)\:=\:1}

We know that,

\displaystyle{\pink{\sf\:\log_b\:(\:b\:)\:=\:1}}

\displaystyle{\implies\sf\:\log_4\:(\:2x\:-\:4\:)\:=\:\log_4\:(\:4\:)}

Taking antilog to the base 4 on both sides, we get,

\displaystyle{\implies\sf\:2x\:-\:4\:=\:4}

\displaystyle{\implies\sf\:2x\:=\:4\:+\:4}

\displaystyle{\implies\sf\:2x\:=\:8}

\displaystyle{\implies\sf\:x\:=\:\cancel{\dfrac{8}{2}}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:x\:=\:4\:}}}}

Answered by Ayushsf2hindustan
2

Answer:

\huge\color{red}{ \colorbox{green}{\colorbox{aqua} {x = 4}}}

Step-by-step explanation:

It's in the attachment,

have an glorious day ahead !!!

Attachments:
Similar questions