Math, asked by nimesht567, 10 months ago

If (2x-5) is a factor of 6x^3-(k+6)x^2+2kx-25 find k

Answers

Answered by SillySam
10

Answer :

\tt k = \dfrac{125}{17}

Given :

P(x) = 6x³ - (k +6) x² + 2kx -25

Factor = (2x-5)

Solution :

Since , (2x -5) is a factor of the given polynomial ,

\therefore 2x - 5 = 0

2x = 5

x = \dfrac{5}{2}

Using this value of x in the cubic polynomial ,

\implies \tt \: p(x) = 6 {x}^{3}  - (k + 6) {x}^{2}  + 2kx - 25

\implies \tt p(x) = 6 \times   \left({ \frac{5}{2}}\right)^{3}  - (k + 6) \left(  { \frac{5}{2} } \right)^{2}  + 2k  \times \frac{5}{2}  - 25

Let P(x) = 0

\implies \tt 0 = 6 \times  \frac{125}{8}  - (k + 6) \frac{25}{4}  + 2k \times  \frac{5}{2}   -  25

\implies \tt  0 =  \frac{375}{4}  - (k + 6) \frac{25}{4}  + 2k  - 25

Making the common denominator 4 for all the terms

 \implies\tt 0 =  \frac{375}{4}  -\frac{(25k + 150)}{4}  +  \frac{8k}{4}  -  \frac{100}{4}

 \implies \tt 0 = 375 - (25 k+ 150) + 8k - 100

\implies \tt 0 = 275 - 25k + 8k - 150

\implies \tt 0 = 125 - 17k

 \implies \tt 17k = 125

\implies \tt k =  \dfrac{125}{17}

Similar questions