If 2x-5y =16 and xy=-1 then find the value of 4²x + 25 y²
Answers
Answered by
1
Correct Question:
- If 2x - 5y = 16 and xy = -1 then find the value of 4x² + 25y²
Solution:
Given That:
→ 2x - 5y = 16 — (i)
→ xy = -1
Squaring both sides of equation (i), we get:
→ (2x - 5y)² = 16²
Using identity (a - b)² = a² - 2ab + b², we get:
→ (2x)² + (5y)² - 2 × (2x) × (5y) = 256
→ 4x² + 25y² - 20xy = 256
Substituting the value of xy, we get:
→ 4x² + 25y² + 20 = 256
→ 4x² + 25y² = 256 - 20
→ 4x² + 25y² = 236
★ Which is our required answer.
Additional Information:
Algebraic Identities.
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- (a + b)² + (a - b)² = 2(a² + b²)
- (a + b)² - (a - b)² = 4ab
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- (x + a)(x + b) = x² + (a + b)x + ab
- (x + a)(x - b) = x² + (a - b)x - ab
- (x - a)(x + b) = x² - (a - b)x - ab
- (x - a)(x - b) = x² - (a + b)x + ab
- (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
Similar questions