Math, asked by SayorDutta, 7 months ago

If 2x + y = 23 and 4x - y = 19, find the value of (3y - 2x)​

Answers

Answered by TheProphet
3

S O L U T I O N :

We have two equation;

  • 2x + y = 23..............(1)
  • 4x - y = 19................(2)

\underline{\underline{\tt{Using\:\:by\:\:substitution\:\:method\::}}}

From equation (1),we get;

\mapsto\tt{2x + y = 23}

\mapsto\tt{ y = 23-2x............(3)}

Putting the value of y in equation (2),we get;

\mapsto\tt{4x - (23-2x ) = 19}

\mapsto\tt{4x - 23+2x = 19}

\mapsto\tt{6x -23 = 19}

\mapsto\tt{6x  = 19+23}

\mapsto\tt{6x  = 42}

\mapsto\tt{x  = \cancel{42/6}}

\mapsto\bf{x = 7}

∴Putting the value of x in equation (3),we get;

\mapsto\tt{y = 23-2(7)}

\mapsto\tt{y = 23-14}

\mapsto\bf{y = 9}

Now,

⇒ 3y - 2x

⇒ 3(9) - 2(7)

⇒ 27 - 14

⇒ 13

Thus,

The value of (3y - 2x) will be 13 .

Similar questions