Math, asked by icebatch202, 7 months ago

if 2x-y=3; 5x+y=4 using matrix inversion method​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{2x-y=3 and 5x+y=4}

\underline{\textbf{To find:}}

\textsf{Solution of the given equations by matrix}

\textsf{inversion method}

\underline{\textbf{Solution:}}

\textsf{The given equations can be written as,}

\bf\left(\begin{array}{cc}2&-1\\5&1\end{array}\right)\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{c}3\\4\end{array}\right)

\implies\mathsf{A\,X=B}

\mathsf{|A|=\left|\begin{array}{cc}2&-1\\5&1\end{array}\right|=2+5=7\,\neq\,0}

\therefore\mathsf{A^{-1}\;exists}

\mathsf{Also,\;adj\,A=\left(\begin{array}{cc}1&1\\-5&2\end{array}\right)}

\mathsf{A^{-1}=\dfrac{1}{|A|}\,adj\,A}

\mathsf{A^{-1}=\dfrac{1}{7}\left(\begin{array}{cc}1&1\\-5&2\end{array}\right)}

\mathsf{Now,}

\mathsf{X=A^{-1}\,B}

\mathsf{X=\dfrac{1}{7}\left(\begin{array}{cc}1&1\\-5&2\end{array}\right)\left(\begin{array}{c}3\\4\end{array}\right)}

\mathsf{X=\dfrac{1}{7}\left(\begin{array}{c}3+4\\-15+8\end{array}\right)}

\mathsf{X=\dfrac{1}{7}\left(\begin{array}{c}7\\-7\end{array}\right)}

\mathsf{\left(\begin{array}{c}x\\y\end{array}\right)=\left(\begin{array}{c}1\\-1\end{array}\right)}

\implies\boxed{\bf\,x=1\;\;and\;\;y=-1}

Similar questions