Math, asked by buzzpranav06, 9 months ago

If 2x + y = - 5, prove that 8x3 + y3– 30xy + 125 = 0

Answers

Answered by Anonymous
5

2x+y=-5,

2x+y+5=0,

 if a³+b³+c³=0,then a³+b³+c³=3abc,

So, 2x³+y³+5³=2x×3×y×5

  8x³+y³+125=30xy

  8x³+y³+125-30xy=0

Answered by Mora22
2

Answer:

2x + y=  - 5(given)

cubing \: on \: both \: sides

{(a + b ) }^{3}  =  {a}^{3 }  +  {b}^{3}  + 3ab(a + b)

 {(2x)}^{3}  +  {y}^{3}  + 3 \times 2x \times y(2x + y) =  - 125

8 {x}^{3}  +  {y}^{3}  + 6xy( - 5) + 125 = 0

8 {x}^{3}  +  {y}^{3}  - 30xy + 125 = 0

hence \: proved.

Similar questions