if 2x + y = - cosx then dy /dx is equals to1.
Answers
Answer:
Answer:
Given:
To Find:
Step-by-step explanation:
Answer:
Answer:
Answer:
\boxed{\mathfrak{\frac{dy}{dx} = sin \ x - 2}}
dx
dy
=sin x−2
Given:
\sf 2x + y = -cos \: x2x+y=−cosx
To Find:
\sf \frac{dy}{dx} \: i.e. \: y'(x)
dx
dy
i.e.y
′
(x)
Step-by-step explanation:
\begin{gathered}\sf Find \: the \: derivative \: of \: the \: following \\ \sf via \: implicit \: differentiation: \\ \sf \implies \frac{d}{dx} (2x + y) = \frac{d}{dx} ( - cos \: x) \\ \\ \sf Differentiate \: the \: sum \: term \: by \: term \\ \sf and \: factor \: out \: constants: \\ \sf \implies 2 \frac{d}{dx} (x) + \frac{d}{dx} (y) = - \frac{d}{dx} ( cos \: x) \\ \\ \sf The \: derivative \: of \: x \: is \: 1: \\ \sf \implies 2 \times 1 + \frac{dy}{dx} = - \frac{d}{dx} ( cos \: x) \\ \\ \sf \frac{d}{dx} ( cos \: x) = - sin \: x : \\ \sf \implies 2 + \frac{dy}{dx} = - ( - sin \: x) \\ \\ \sf \implies 2 + \frac{dy}{dx} = sin \: x \\ \\ \sf \implies \frac{dy}{dx} = sin \: x - 2\end{gathered}
Findthederivativeofthefollowing
viaimplicitdifferentiation:
⟹
dx
d
(2x+y)=
dx
d
(−cosx)
Differentiatethesumtermbyterm
andfactoroutconstants:
⟹2
dx
d
(x)+
dx
d
(y)=−
dx
d
(cosx)
Thederivativeofxis1:
⟹2×1+
dx
dy
=−
dx
d
(cosx)
dx
d
(cosx)=−sinx:
⟹2+
dx
dy
=−(−sinx)
⟹2+
dx
dy
=sinx
⟹
dx
dy
=sinx−2
\therefore∴
\sf \frac{dy}{dx} \: i.e. \: y'(x) = sin \: x - 2
dx
dy
i.e.y
′
(x)=sinx−2
Step-by-step explanation:
please mark me as brainiest answer....