Math, asked by itsjoker, 6 months ago

if 2x + y = - cosx then dy /dx is equals to​

Answers

Answered by Anonymous
3

Step-by-step explanation:

ANSWER

2

x

+2

y

=2

x+y

Differentiating both sides

ln2.2

x

+ln2.2

y

dx

dy

=ln2.2

x+y

(1+

dx

dy

)

2

x

+2

y

dx

dy

=2

x+y

(1+

dx

dy

)

2

x

+2

y

dx

dy

=2

x+y

+2

x+y

dx

dy

(2

y

−2

x+y

)

dx

dy

=(2

x+y

−2

x

)

dx

dy

=

2

y

−2

x+y

2

x+y

−2

x

dx

dy

=

2

y

(1−2

x

)

2

x

(2

y

−1)

dx

dy

=2

x−y

(

1−2

x

2

y

−1

)

Answered by kush193874
17

Answer:

Answer:

 \boxed{\mathfrak{\frac{dy}{dx} = sin \ x - 2}}

Given:

 \sf 2x + y = -cos \: x

To Find:

 \sf \frac{dy}{dx} \:  i.e. \: y'(x)

Step-by-step explanation:

 \sf Find  \: the  \: derivative  \: of  \: the  \: following \\   \sf via \:  implicit   \:  differentiation: \\  \sf \implies \frac{d}{dx} (2x + y) =  \frac{d}{dx} ( - cos \: x) \\  \\  \sf Differentiate  \: the  \: sum  \: term \:  by  \: term  \\  \sf and  \: factor  \: out  \:   constants: \\  \sf \implies 2 \frac{d}{dx} (x) +  \frac{d}{dx} (y) =   - \frac{d}{dx} (  cos \: x) \\  \\ \sf The \:  derivative  \: of  \: x \:  is  \: 1: \\  \sf \implies 2 \times 1 +  \frac{dy}{dx}  =  -  \frac{d}{dx} (  cos \: x) \\  \\  \sf \frac{d}{dx} (  cos \: x) =  - sin \: x :  \\  \sf \implies 2 +  \frac{dy}{dx}  =  - ( - sin \: x) \\  \\  \sf \implies 2 +  \frac{dy}{dx}  = sin \: x \\  \\  \sf \implies    \frac{dy}{dx}  = sin \: x - 2

 \therefore

 \sf \frac{dy}{dx} \:  i.e. \: y'(x) = sin \: x - 2

Similar questions