If 2x – y + z = 0, prove that 4x² - y² +z²+ 4xz = 0
Answers
Answered by
3
Step-by-step explanation:
4x² + y² + z² -4xy -2yz +4xz = 0
(2x)² + y² + z² +2(2x)(-y)+2(-y)z +2(2x)z =0
use formula,
(a + b + c)² = a² + b² + c² +2(ab+bc+ca)
now,
(2x -y + z)² = 4x² +y² +z² -4xy -2yz +4xz =0
so, (2x -y -z)² is factor of given
Answered by
0
Step-by-step explanation:
To prove 4x² - y² + z² + 4xy = 0
Here,
2x - y + z = 0
Therefore, (2x - y + z) is a factor.
(2x - y + z)² is also a factor
(2x - y + z)²
= (2x)² +(y)² +(z)² +(2)(2x)(-y) +(2)(-y)(z) +(2)(2x)(z)
[ ,
(++) = (²+²+²+2+2+2)
=²+²+²+ 2(++)]
(2x)² +(y)² +(z)² +(2)(2x)(-y) +(2)(-y)(z) +(2)(2x)(z)
= 4x² + y² + z² - 4xy - 2xy + 4xy
Hence proved!!
Hope this answer helps you. Please mark as the brainliest!!☺️
Similar questions