if 2x²+x+5 and 2x²+4x-19 have a common factor(x-b),then show the value of b is equal to 8
Answers
Answered by
17
Solution :-
Let f(x) = 2x² + x + 5
and p(x) = 2x² + 4x - 19
Given
(x - b) is a factor of f(x) and g(x)
∴ By factor theorem
f(b) = 0 and p(b) = 0
i) Consider f(a) = 0
⇒ 2(b)² + b + 5 = 0
⇒ 2(b²) + b + 5 = 0
⇒ 2b² + b + 5 = 0 ----eq(1)
ii) Consider p(b) = 0
⇒ 2(b)² + 4(b) - 19 = 0
⇒ 2(b²) + 4b - 19 = 0
⇒ 2b² + 4b - 19 = 0 ----eq(2)
From eq(1) and eq(2)
⇒ 2b² + b + 5 = 2b² + 4b - 19
⇒ 2b² + b + 5 - 2b² - 4b + 19 = 0
⇒ - 3b + 24 = 0
⇒ 24 = 3b
⇒ 24/3 = b
⇒ 8 = b
⇒ b = 8
Hence shown
Answered by
9
Given
To show
Explanation
Applying factor theorem,
Case 1:
substituting x=b
Case 2:
Hence proved
Similar questions
English,
6 months ago
English,
6 months ago
English,
6 months ago
Computer Science,
11 months ago
Music,
1 year ago
Social Sciences,
1 year ago