Math, asked by asifiips, 11 months ago

if 2x²+x+5 and 2x²+4x-19 have a common factor(x-b),then show the value of b is equal to 8​

Answers

Answered by Anonymous
17

Solution :-

Let f(x) = 2x² + x + 5

and p(x) = 2x² + 4x - 19

Given

(x - b) is a factor of f(x) and g(x)

By factor theorem

f(b) = 0 and p(b) = 0

i) Consider f(a) = 0

⇒ 2(b)² + b + 5 = 0

⇒ 2(b²) + b + 5 = 0

⇒ 2b² + b + 5 = 0 ----eq(1)

ii) Consider p(b) = 0

⇒ 2(b)² + 4(b) - 19 = 0

⇒ 2(b²) + 4b - 19 = 0

⇒ 2b² + 4b - 19 = 0 ----eq(2)

From eq(1) and eq(2)

⇒ 2b² + b + 5 = 2b² + 4b - 19

⇒ 2b² + b + 5 - 2b² - 4b + 19 = 0

⇒ - 3b + 24 = 0

⇒ 24 = 3b

⇒ 24/3 = b

⇒ 8 = b

⇒ b = 8

Hence shown

Answered by DhanyaDA
9

Given

\sf 2x^2+x+5 \: and \:2x^2+4x-19\: have \\ \sf common \:factor (x-b)

To show

\boxed{\sf b=8}

Explanation

\sf as \:per \:the \:factor \:theorem,

\sf if\: (x-a) \:is \:a\: factor \:of \:p(x) \\ \\ \sf then \:p(a)=0

\sf let \:p(x)=2x^2+x+5  \\ \\ \sf g(x)=2x^2+4x-19

Applying factor theorem,

Case 1:

p(b) = 0

substituting x=b

2 {b}^{2}  + b + 5 = 0..........(1)

Case 2:

g(b) = 0

2 {b}^{2}  + 4b - 19 = 0...........(2)

\huge\undeline{\sf (1)=(2)}

2 {b}^{2}  + b + 5 = 2 {b}^{2}  + 4b - 19\\ \\ b-4b=-19-6

 =  >  - 3b =  - 24

 =  >  \huge\boxed{ \sf \: b = 8 }

Hence proved

Similar questions