Math, asked by Soumya465786, 5 months ago

if 2xcosa=3 and 3 tana=2y find relation between x and y by eliminating a​

Answers

Answered by Anonymous
10

 \bull  \:  \:  \: \LARGE  \bf{Given :}

 \sf \to \: 2x \cos \theta = 3 \\  \to \sf 3 \tan \theta = 2y

 \bull  \:  \:  \: \LARGE  \bf{Solution :}

  \large\sf \: 2x \cos \theta = 3 \\  \\  \implies \sf x \cos \theta \:  =  \frac{3}{2}  \\  \\  \large \:   \implies\sf \:     { \cos}^{2}  \theta =  \frac{9}{4 {x}^{2} }   \\  \\   \large\implies \sf \:  { \sec}^{2}  \theta =   \frac{4 {x}^{2} }{9} \underline{ \:  \:  \:  \:  \:  \:  \:  \: }(1)

Again

 \sf \large \:3 \tan \theta = 2y \\  \\  \large \implies \sf \:  { \tan}^{2}  \theta =  \frac{ 4{y}^{2} }{9} \underline{ \:  \:  \:  \:  \:  \:  \:  \: }(2)

 \sf \LARGE \underline{ Subtracting  \:   {eq}^{n}  \: 1 \: and \: 2}

  \sf\large \:  { \sec}^{2}  \theta  -    { \tan}^{2}  \theta =  \frac{4 {x}^{2} }{9}   -   \frac{4 {y}^{2} }{9}  \\  \\  \implies \large \sf \: 1 =  \frac{4 {x}^{2} }{9}   -   \frac{4 {x}^{2} }{9}  \\  \\  \implies \sf \boxed{ \boxed {\mathfrak{4 {x}^{2}  - 4 {y}^{2}  = 9}}}

_____________________________________________

HOPE THIS IS HELPFUL...

Similar questions
Math, 2 months ago