Math, asked by ujeliti2000, 5 hours ago

If 2xyz = 1 and x ^ 3 + y ^ 3 + z ^ 3 = 1 1. Prove that: a^ *2y-1z-1 * a^ y2.2-1.x-1 * a^ 22.x-1.y-1 =a^ 2

Answers

Answered by amitnrw
5

Given : 2xyz = 1  x³ + y³ + z³ = 1  

To Find : Prove that

a^{x^2y^{-1}z^{-1}}.a^{y^2z^{-1}x^{-1}}.a^{z^2x^{-1}y^{-1}} = a^2

Solution:

a^{x^2y^{-1}z^{-1}}.a^{y^2z^{-1}x^{-1}}.a^{z^2x^{-1}y^{-1}} = a^2

LHS =

a^{x^2y^{-1}z^{-1}}.a^{y^2z^{-1}x^{-1}}.a^{z^2x^{-1}y^{-1}}

=a^{\frac{x^2}{yz}}.a^{\frac{y^2}{xz}}.a^{\frac{z^2}{xy}}

Using identity  xᵃ . xᵇ = xᵃ⁺ᵇ

=a^{(\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy})}

=a^{(\frac{x^3+y^3+z^3}{xyz} )}

x³ + y³ + z³ = 1  

2xyz = 1  

=>   x³ + y³ + z³ = 2xyz

=> (x³ + y³ + z³ )/ xyz = 2

Substituting

a^{(\frac{x^3+y^3+z^3}{xyz} )}=a^2

= RHS

Hence proved

a^{x^2y^{-1}z^{-1}}.a^{y^2z^{-1}x^{-1}}.a^{z^2x^{-1}y^{-1}} = a^2

Learn More:

brainly.in/question/33339572

simplify bracket on minus 2 multiply minus 10 ki power 3 bracket of ...

brainly.in/question/10417730

(1×61/64)-⅔ simplify​ - Brainly.in

brainly.in/question/5028494

Similar questions