Math, asked by Mrsilvi, 10 months ago

if 2y=5x^2+3;find dy÷dx at x=-2​

Answers

Answered by BrainlyPopularman
1

Answer:

2y = 5 {x}^{2}  + 3 \\  \\  =  >  2\frac{dy}{dx}  = 10x \\  \\  =  >  \frac{dy}{dx}  = 5x \\  \\ at  \: \: x =  - 2 \\  \\   =  > \frac{dy}{dx}  =  - 10

Answered by harendrachoubay
5

The value of \dfrac{dy}{dx} = - 10

Step-by-step explanation:

We have,

2y = 5x^2 + 3

To find, \dfrac{dy}{dx}  (x = - 2​) = ?

2y = 5x^2 + 3

Differentiating both sides w.r.t. x, we get

\dfrac{d(2y)}{dx}= \dfrac{d(5x^2+3)}{dx}

2\dfrac{dy}{dx}= 5(2x)+0

2\dfrac{dy}{dx}= 10x

\dfrac{dy}{dx}=\dfrac{10x}{2}=5x

\dfrac{dy}{dx}=5x

Put x = - 2, we get

\dfrac{dy}{dx} = 5( -2) = - 10

Thus, the value of \dfrac{dy}{dx} = - 10

Similar questions