Math, asked by manoharb, 1 year ago

If 2y cos theta=x sin theta and 2x sec theta -y cosec theta=3, then the relation between x and y is

Answers

Answered by MaheswariS
13

\textbf{Given:}

2y\,cos\theta=x\,sin\theta

2x\,sec\theta -y\,cosec\theta=3

\textbf{To find:}

\text{Relation between x and y}

\textbf{Solution:}

\text{The given equations can be written as}

2x\,sec\theta -y\,cosec\theta-3=0

x\,sec\theta-2y\,cosec\theta-0=0

\text{By cross multiplication rule, we get}

\dfrac{sec\theta}{0-6y}=\dfrac{cosec\theta}{-3x-0}=\dfrac{1}{-4xy+xy}

\dfrac{sec\theta}{-6y}=\dfrac{cosec\theta}{-3x}=\dfrac{1}{-3xy}

\implies

\dfrac{sec\theta}{-6y}=\dfrac{1}{-3xy}

sec\theta=\dfrac{-6y}{-3xy}

sec\theta=\dfrac{2}{x}

\text{Taking reciprocals, we get}

\bf\,cos\theta=\dfrac{x}{2}

\text{and}

\dfrac{cosec\theta}{-3x}=\dfrac{1}{-3xy}

cosec\theta=\dfrac{-3x}{-3xy}

cosec\theta=\dfrac{1}{y}

\text{Taking reciprocals, we get}

\bf\,sin\theta=\dfrac{y}{1}

\text{We know that,}

\bf\,cos^2\theta+sin^2\theta=1

(\frac{x}{2})^2+(\frac{y}{1})^2=1

\dfrac{x^2}{4}+\dfrac{y^2}{1}=1

\textbf{Answer:}

\text{The required relation is}

\boxed{\frac{x^2}{4}+\frac{y^2}{1}=1}

Answered by ruthwikpvn
2

Answer:

Step-by-step eAnswer: (1) 4

Solution:

Given,

2y cos θ = x sin θ….(i)

Squaring on both sides,

4y2 cos2θ = x2 sin2θ….(ii)

Again from the given,

2x sec θ – y cosec θ = 3

2x/cos θ – y/sin θ = 3

2x sin θ – y cos θ = 3 sin θ cos θ

2x sin θ – (x sin θ)/2 = 3 sin θ cos θ {from (i)}

3x sin θ = 6 sin θ cos θ

x = 2 cos θ….(iii)

From (ii) and (iii),

x2 + 4y2 = (2 cos θ)2 + [(x2 sin2θ)/cos2θ]

= 4 cos2θ + (4 cos2θ)sin2θ/cos2θ

= 4(cos2θ + sin2θ)

=4

Similar questions