If √3 - 1 / √3 + 1 = a – b√3, then
A. a = 2, b = 1
B. a = 2, b = -1
C. a = -2, b = 1
D. a = b = 1
Answers
Answer: a
Steps in attachment
Given : √3 - 1 / √3 + 1 = a – b√3
We have , √3 - 1 / √3 + 1
On rationalising the denominator :
= (√3 - 1) (√3 - 1)/ (√3 + 1)(√3 - 1)
= (√3 - 1)²/√3² - 1²
[By using an identity, (a + b) (a - b) = a² - b²]
= √3² + 1² - 2 × √3 × 1 / (3 - 1)
[By using an identity,(a – b)² = a² + b² – 2ab]
= (3 + 1 - 2√3)/2
= (4 - 2√3)/2
= 4/2 - 2√3/2
√3 - 1 / √3 + 1 = 2 - √3
Now,
√3 - 1 / √3 + 1 = a – b√3
2 - √ 3 = a – b√3
On Comparing , we obtain
a = 2 , b = 1
Hence the value of a is 2 and b is 1.
Among the given options option (A) a = 2, b = 1 is correct.
HOPE THIS ANSWER WILL HELP YOU…..
Similar questions :
If x = √3 - √2 /√3 + √2 and y = √3 + √2 / √3 - √2 , then x² + xy + y² =
A. 101
B. 99
C. 98
D. 102
https://brainly.in/question/15897387
In each of the following determine rational numbers a and b.
(i) √3-1/√3+1= a-b√3 (ii)4+√2/2+√2= a-√b
(iii) 3 + √2 / 3-√2 = a+b √2
(iv) 5 + 3√3 / 7 + 4√3 = a+b√3 (v) √11 - √7 / √11 + √7 = a-b √77 (vi) 4 + 3√5 / 4 - 3√5 = a + b√5
https://brainly.in/question/15897356