Math, asked by poojithabasam, 7 months ago

if √3-1/√3+1=a+b√3 then find the values of a and b​

Answers

Answered by prince5132
17

GIVEN :-

  • (√3 - 1)/(√3 + 1) = a + b√3.

TO FIND :-

  • The value of a and b.

SOLUTION :-

 \\ :  \implies \displaystyle \sf \:  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  + 1}  = a + b \sqrt{3}  \\  \\  \\

 :  \implies \displaystyle \sf \:  \frac{ (\sqrt{3}  - 1)( \sqrt{3}  - 1)}{ (\sqrt{3}  + 1)( \sqrt{3}  - 1)}  = a + b \sqrt{3}  \\  \\  \\

:  \implies \displaystyle \sf \:  \frac{ (\sqrt{3}  - 1) ^{2} }{ (\sqrt{3}  + 1)( \sqrt{3}  - 1)}  = a + b \sqrt{3}  \\  \\  \\

 \bullet \  \displaystyle \sf By \ using \ identity : (a + b)(a - b) = a^{2} - b^{2} \\ \\ \\

 :  \implies \displaystyle \sf \:  \dfrac{( \sqrt{3 } )^{2}  + (1)^{2}  - 2 \times  \sqrt{3}  \times 1}{( \sqrt{3}) ^{2}  - (1) ^{2}  }  = a  + b \sqrt{3}  \\  \\  \\

 :  \implies \displaystyle \sf \:  \frac{3 + 1 - 2 \sqrt{3} }{ \sqrt{9}  - 1} = a + b\sqrt{3} \\  \\  \\

:  \implies \displaystyle \sf \: \frac{4 - 2 \sqrt{3} }{3 - 2} = a + b\sqrt{3} \\  \\  \\

 :  \implies \displaystyle \sf  \frac{4 - 2 \sqrt{3} }{2} = a + b\sqrt{3}  \\  \\  \\

 :  \implies \displaystyle \sf \:  \frac{2(2 -  \sqrt{3} )}{2}  = a + b \sqrt{3}  \\  \\  \\

 :  \implies \displaystyle \sf 2 -  \sqrt{3} = a + b \sqrt{3}   \\  \\  \\

 :  \implies \displaystyle \sf 2  + ( - )  \sqrt{3} = a + b \sqrt{3}   \\  \\

 \bullet \ \displaystyle \sf On \ comparing \  both  \ sides. \\ \\

 :  \implies \underline{\boxed {\displaystyle \sf a = 2\  , \ b = 3 }} \\ \\

\therefore \underline{\displaystyle \sf Value \ of \ a \ is \ 2 \ and \ b \ is \ -1.}

Answered by mysticd
8

 Given \: a +\sqrt{3} b

 = \frac{(\sqrt{3} - 1)}{(\sqrt{3} + 1)}

 = \frac{(\sqrt{3} - 1)(\sqrt{3} -1)}{(\sqrt{3} + 1)(\sqrt{3} - 1)}

 = \frac{(\sqrt{3} - 1)^{2}}{(\sqrt{3})^{2} - 1^{2}}

 = \frac{ (\sqrt{3})^{2} + 1^{2} - 2 \times \sqrt{3} \times 1 }{ 3 - 1 }

 = \frac{3+1-2\sqrt{3}}{2}

 = \frac{4-2\sqrt{3}}{2}

 = \frac{2(2-\sqrt{3})}{2}

 = 2 + (-1) \sqrt{3}

 \pink {\therefore a +\sqrt{3} b = 2 + (-1) \sqrt{3}}

/* Compare bothsides , we get */

\green { a= 2 \: and \: b = -1}

•••♪

Similar questions