Math, asked by StingRaider, 1 year ago

If 3+2√2/ 3−√2 = + √2 ,then find the values of a and b.

Answers

Answered by jinay91
0

Step-by-step explanation:

\huge\bold{ANSWER~:}ANSWER :

\begin{lgathered}\frac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} } = a - b \sqrt{2} \\ \\ \frac{3 + 2 \sqrt{2} }{3 - 2 \sqrt{2} } \times \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} } = a - b \sqrt{2} \\ \\ \frac{ {(3 + 2 \sqrt{2)} }^{2} }{9 - 8} = a - b \sqrt{2} \\ \\ \frac{9 + 12 \sqrt{2} + 8 }{1}= a + b \sqrt{2}\end{lgathered}

3−2

2

3+2

2

=a−b

2

3−2

2

3+2

2

×

3+2

2

3+2

2

=a−b

2

9−8

(3+2

2)

2

=a−b

2

1

9+12

2

+8

=a+b

2

mark as brainliest answer and plz follow me.

Similar questions