Math, asked by bhargavpavankumar2, 1 year ago

if√3+√2/√3_√2=a+b√6 then b=​

Answers

Answered by Aditi990
6

  \color{palevioletred} \underline  {\underline{\mathfrak{  {Given:}}}} \\ </h3><p>  \small\rm{\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3} - \sqrt{2} } =  {a + b \sqrt{6}} } \\  \\ </p><p>\color{palevioletred} \underline  {\underline{\mathfrak{  {To \: Find : }}}} \\  \rm{values \: of \:  \: a \: \:   and \:  \: b} \\    \\  \color{palevioletred} \underline  {\underline{\mathfrak{  {Solution:}}}} \:   \\ \rm{rationalise \: the \: denominator \: of \:   \small\rm{\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3} - \sqrt{2}}}}

 \implies\small\rm{\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3} - \sqrt{2}} \times   \dfrac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} } = a + b \sqrt{6}  } \\    \\  \implies{ \rm{ \dfrac{ {( \sqrt{3} +  \sqrt{2} ) }^{2} }{ {( \sqrt{3} )}^{2} -  {( \sqrt{2} )}^{2}  }    = a + b \sqrt{6} }} \\   \\  \implies{ \rm{  \frac{ {( \sqrt{3} )}^{2} +  {( \sqrt{2} )}^{2} }{3 - 2} } = a + b \sqrt{6} } \\  \\ \implies\small\rm{\dfrac{{{{3} }^{} +{2} }^{}  + 2\sqrt{6} }{{{}}^{} { {1}} } = a + b \sqrt{6} } \\  \\  \implies \:  \rm \: 5 + 2 \sqrt{6}  = a + b \sqrt{6}

On comparing both sides we get,

a = 5

b = 2

Similar questions