Math, asked by yoshikareddy31, 1 month ago

If (√3 + √2) /(√3 - √2) = a+b√6 then find a and b​

Answers

Answered by Mihir1001
0

 \quad \ \ \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  = {\footnotesize{ a + b \sqrt{6} }}

 \Rightarrow \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }  = {\footnotesize{ a + b \sqrt{6} }}

\Rightarrow \frac{ {( \sqrt{3} +  \sqrt{2} ) }^{2} }{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2}) }^{2} }  = {\footnotesize{ a + b \sqrt{6} }}

\Rightarrow \frac{ {( \sqrt{3}) }^{2}  +  {( \sqrt{2} )}^{2} + 2( \sqrt{3}  )( \sqrt{2}) }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2} )}^{2} }  = {\footnotesize{ a + b \sqrt{6} }}

\Rightarrow \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  = {\footnotesize{ a + b \sqrt{6} }}

\Rightarrow \frac{5 + 2 \sqrt{6} }{1}  = {\footnotesize{ a + b \sqrt{6} }}

\Rightarrow {\footnotesize{ 5 + 2 \sqrt{6} =  a + b \sqrt{6} }}

On comparing, we get :

  • a = 5
  • b = 2

....

Similar questions