Math, asked by moonsnstars123, 1 month ago

if √3+√2/√3-√2 = a+b√6 then find the values of a and b​

Answers

Answered by ZaraAntisera
2

Answer:

\mathrm{solve\:for\:a,\:\sqrt{3}+\frac{\sqrt{2}}{\sqrt{3}}-\sqrt{2}=a+b\sqrt{6}\quad :\quad a=\sqrt{3}+\sqrt{\frac{2}{3}}-\sqrt{2}-b\sqrt{6}}

Step-by-step explanation:

\sqrt{3}+\frac{\sqrt{2}}{\sqrt{3}}-\sqrt{2}=a+b\sqrt{6}

a+b\sqrt{6}=\sqrt{3}+\frac{\sqrt{2}}{\sqrt{3}}-\sqrt{2}

\mathrm{Combine\:same\:powers}\::\quad \frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}

a+b\sqrt{6}=\sqrt{3}+\sqrt{\frac{2}{3}}-\sqrt{2}

\mathrm{Subtract\:}b\sqrt{6}\mathrm{\:from\:both\:sides}

a+b\sqrt{6}-b\sqrt{6}=\sqrt{3}+\sqrt{\frac{2}{3}}-\sqrt{2}-b\sqrt{6}

a=\sqrt{3}+\sqrt{\frac{2}{3}}-\sqrt{2}-b\sqrt{6}

Answered by LilyWhite
2

Step-by-step explanation:

 =  >  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

Multiply and divide with "√3 + √2"

 =  >  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }  \:  \times  \:  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }

 => \frac{(√3+√2)²}{(√3)²~-~(√2)²}

 => \frac{(√3)² + (√2)² + 2√3√2)}{(3~-~2)}

 => \frac{(3~+~2~+2√6)}{1}

=> \frac{5~+2√6}{1}

:. a + b6 = 5 + 26

a = 5

b = 2

Similar questions