Math, asked by veenabhat525, 2 months ago

If (3, 2), (3, 6), (k, 9) are the collinear points . Find the value of k​

Answers

Answered by BrainlyGovind
40

k = 8 \: \ \:  \:  \:  \:  \:  \:  \:

Answered by MagicalLove
247

Step-by-step explanation:

_____________________

_______________________________

\qquad{ \underline{ \underline{  \bf{  \red{Information \:  \:  from \:  \:  question:}}}}} \begin{cases}& \underline{ \rm{Given : }}\\ & \qquad \bullet \pmb{(3,2) \: (3,6) \: (k,9) \:  \: are \:  \: the \:  \: collinear \:  \: points \: } \\ \\  &  \underline{ \rm{To \:  \:  Find  :  }} \\&  \qquad \bullet \pmb{value \:  \: of \:  \: k \: }\end{cases}

____________________

_____________________________

{ \underline{ \underline{ \bf{ \red{Concept :}}}}} \begin{cases} \sf \bullet{ \: If  \:  \: the \:  \:  above  \:  \: points \:  \:  are  \:  \: collinear \:  \:  they \:  \:  will  \:  \: in  \:  \: a  \:  \: same \:  \:  line  }\\  \\  {\sf{ \bullet \: i.e,  \:  \: they \:  \:  will \:  \:  not \:  \:  form  \:  \: triangle }}  \\  \\   \bullet\boxed{ \sf{ \green{we \:  \: can \:  \: say \:  \: that \:  \: area \:  \: of \:  \triangle \:  \: ABC \:  = 0}}} \: \:  \end{cases}

_____________________

_______________________________

{ \underline{ \underline{ \bf{ \red{Formula :}}}}}  \begin{cases}{ \boxed{ \bf{ \pink{\triangle \:  \: ABC  =  \frac{1}{2} [x _1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]}}}} \end{cases} \\

_____________________

_______________________________

{ \underline{ \underline{ \bf{ \red{Solution:}}}}}

Let us take A(3,2) B (3,6) C (k,9)

 { \underline{ \underline{ \bf{ \red{Here  : }}}}} \begin{cases} x_1 = 3 \\   y_1 = 2 \\ x_2 = 3 \\ y_2 = 6 \\ x_3 = k \\ y_3 = 9\end{cases}

Substitute in formula ,

 \dashrightarrow \bf \: ∆ \: ABC  =  \frac{1}{2} (3(6 - 9) + 3(9 - 2) + k(2 - 6)) \\

\dashrightarrow \bf \: ∆ \: ABC  = \frac{1}{2}   (3( - 3) + 3(7) + 2k - 26)

\dashrightarrow \bf \: ∆ \: ABC  = \frac{1}{2}( - 9 + 21 - 26 + 2k) \\

\dashrightarrow \bf \: ∆ \: ABC  = \frac{1}{2}( - 9 - 5 + 2k) \\

\dashrightarrow \bf \: ∆ \: ABC  = \frac{1}{2}( - 14 + 2k) \\

° Given points are collinear.

\dashrightarrow \bf \: \frac{1}{2}( - 14 + 2k) = 0 \\

\dashrightarrow \bf \:( - 14 + 2k) = 0

\dashrightarrow \bf \:2k = 14

\dashrightarrow \bf \:k =  \frac{14}{2}  \\

\dashrightarrow \bf \:k = 7

° Value of k is 7

Similar questions