If 3, -2 and 1 are the zeroes of Cubic polynomial find the polynomial.
Answers
i dont known pta kar lo ga 1 hoirs bad
Answer:
∝ = 3, β = -2, r = 1
= ∝ + β + r = (3) + (-2) + (1)
= 3 -2 + 1
= 4 - 2
= 2
= ∝β + βr + ∝r = (3) (-2) + (1) + (3) (1)
= -6 + (-2) + 3
= -8 +3
= -5
= ∝βr = (3) (-2) (1)
= -6
= k [³ - (∝ + β + r) + (∝β + βr + ∝r) - ∝β]
= k [³ - (2) + (-5) - (-6)
= k [³ - 2) - 5 + 6
= k = 1, p () = + 2 - 5 + 6
= = 1 => f(1) = (1)³ - 2(1)² - 5(1) + 6
= 1 - 2 - 5 + 6
= +4 -4
= 0
∴ (x -2) is a factor of p () = + 2 - 5 + 6
- 2 ) + 2 - 5 + 6 ( + 4 + 3
³ + 2²
-----------------------------------------------------
+4² - 5
-4² - 8
-----------------------------------------------------
3 + 6
3 + 6
-----------------------------------------------------
0
-----------------------------------------------------
= (²+ 4x + 3)
= ² - - 3 + 3
= ( - 1) -3 ( - 1)
= ( - 3) ( -3) = 0
= ( - 3) = 0
= = 3
= ( -1) = 0
= = 1