Math, asked by rRudy, 11 months ago

If -3/2 is a zero of a polynomial p(X)=2x^3+9x^2-x-a, find the value of 'a'​

Answers

Answered by RuthikaMurthy
8

given -3/2 is the zero of the polynomial..

it means it satisfies the given polynomial...

if x is the root and p(y)is polynomial ..

then p(x)=0...

now substitute..-3/2 in given polynomial..

p(-3/2)=0

2×(-3/2)^3+9×(-3/2)^2-(-3/2)-a=0

15-a=0

a=15

Answered by StarGazer001
29

Answer:

Value of a = 15

Step-by-step explanation:

Given \:  \frac{- 3}{2} \: is \: the \: zero \: of \: the \:polynomial

p(x) =  {2x}^{3}  +  {9x}^{2}  - x - a

Substitute \:  \frac{ - 3}{2} \: in \: place \: of \: x

p( \frac{ - 3}{2}) = 2( { \frac{ - 3}{2}) }^{3} + 9( { \frac{ - 3}{2}) }^{2} -  \frac{ - 3}{2} - a = 0

2( \frac{ - 27}{8} ) + 9( \frac{9}{4} ) -  (\frac{ - 3}{2} ) - a = 0

 \frac{ - 54}{8}  +  \frac{81}{4}  +  \frac{3}{2}  - a = 0

 \frac{ - 54 + 162 + 12 - 8a}{8}  = 0

 \frac{120 - 8a}{8}  = 0

120 - 8a = 0 \times 8

120 - 8a = 0

 - 8a = 0 - 120

 - 8a =  - 120

8a = 120

a =  \frac{120}{8}

a = 15

Therefore value of a = 15

Similar questions