Math, asked by kira1234, 1 month ago

If √3/2 sin60° - 1/2 cosƟ = 1/2, find the angle Ɵ


please don't spam

Answers

Answered by aliyafirdos1979
1

Answer:

Here is your answer. please Mark it as the brainliest.

Attachments:
Answered by varadad25
2

Answer:

The angle θ is 60°.

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\dfrac{\sqrt{3}}{2}\:\sin\:60^{\circ}\:-\:\dfrac{1}{2}\:\cos\:\theta\:=\:\dfrac{1}{2}}

We have to find the angle θ.

Now, we know that,

\displaystyle{\sf\:\sin\:60^{\circ}\:=\:\dfrac{\sqrt{3}}{2}}

Now,

\displaystyle{\sf\:\dfrac{\sqrt{3}}{2}\:\sin\:60^{\circ}\:-\:\dfrac{1}{2}\:\cos\:\theta\:=\:\dfrac{1}{2}}

\displaystyle{\implies\sf\:\dfrac{\sqrt{3}}{2}\:\times\:\dfrac{\sqrt{3}}{2}\:-\:\dfrac{1}{2}\:\cos\:\theta\:=\:\dfrac{1}{2}}

\displaystyle{\implies\sf\:\dfrac{\sqrt{3}\:\times\:\sqrt{3}}{2\:\times\:2}\:-\:\dfrac{1}{2}\:\cos\:\theta\:=\:\dfrac{1}{2}}

\displaystyle{\implies\sf\:\dfrac{3}{4}\:-\:\dfrac{1}{2}\:\cos\:\theta\:=\:\dfrac{1}{2}}

\displaystyle{\implies\sf\:\dfrac{1}{2}\:\cos\:\theta\:=\:\dfrac{3}{4}\:-\:\dfrac{1}{2}\:\times\:\dfrac{2}{2}}

\displaystyle{\implies\sf\:\dfrac{1}{2}\:\cos\:\theta\:=\:\dfrac{3}{4}\:-\:\dfrac{2}{4}}

\displaystyle{\implies\sf\:\dfrac{1}{2}\:\cos\:\theta\:=\:\dfrac{3\:-\:2}{4}}

\displaystyle{\implies\sf\:\dfrac{1}{2}\:\cos\:\theta\:=\:\dfrac{1}{4}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\dfrac{\dfrac{1}{4}}{\dfrac{1}{2}}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\dfrac{1}{\cancel4}\:\times\:\cancel{2}}

\displaystyle{\implies\sf\:\cos\:\theta\:=\:\dfrac{1}{2}}

We know that,

\displaystyle{\sf\:\cos\:60^{\circ}\:=\:\dfrac{1}{2}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\theta\:=\:60^{\circ}}}}}

∴ The angle θ is 60°.

Similar questions