Math, asked by rjvrchauhan844, 7 months ago

if 3+2i sin alpha / 1-2i sin alpha is ourely a real number, then find real alpha

Answers

Answered by MaheswariS
4

\underline{\textsf{Given:}}

\mathsf{\dfrac{3+2i\,sin\alpha}{1-2i\,sin\alpha}\;is\;purely\;real}

\underline{\textsf{To find:}}

\mathsf{The\;value\;of\;\alpha}

\underline{\textsf{Solution:}}

\mathsf{Since\;\dfrac{3+2i\,sin\alpha}{1-2i\,sin\alpha}\;is\;purely\;real,\;we\;have}

\mathsf{\dfrac{3+2i\,sin\alpha}{1-2i\,sin\alpha}=\overline{\left(\dfrac{3+2i\,sin\alpha}{1-2i\,sin\alpha}\right)}}

\mathsf{\dfrac{3+2i\,sin\alpha}{1-2i\,sin\alpha}=\dfrac{3-2i\,sin\alpha}{1+2i\,sin\alpha}}

\mathsf{(3+2i\,sin\alpha)(1+2i\,sin\alpha)=(3-2i\,sin\alpha)(1-2i\,sin\alpha)}

\mathsf{3+6i\,sin\alpha+2i\,sin\alpha+4\,i^2\,sin^2\alpha=3-6i\,sin\alpha-2i\,sin\alpha+4\,i^2\,sin^2\alpha}

\mathsf{8i\,sin\alpha=-8i\,sin\alpha}

\mathsf{16i\,sin\alpha=0}

\mathsf{sin\alpha=0}

\implies\mathsf{\alpha=n\,\pi\;\;\;n\,\in\,Z}

\underline{\textsf{Answer:}}

\mathsf{The\;real\;values\;of\;are\;n\,\pi\;\;where\;n\;is\;an\;integer}

Similar questions