Math, asked by divyanshnivedita2006, 3 months ago

if (3/√3+1) +(5/√3-1) =a+b√3 , find a & b​

Answers

Answered by tanvirpahwa
3

Answer:

a=2,b=1.

Step-by-step explanation:

√3-1\√3+1=a-b√3

(Rationalize the denominator)

In LHS(left hand side)

= (√3-1)(√3-1)\(√3+1)(√3-1)

= 3+1-2√3\3-1

=4-2√3\2

(Taking 2 common from numerator)

=2-√3 (1)

In RHS

a-b√3. (2)

A.T.Q(according to question)

(1)=(2)

2-√3=a-b√3 (Comparing both equations)

So, a=2,b=1.

Answered by BrainlyAurora
8

 \underline{ \huge \rm{QUESTION :}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

\large  \rm{if  \: \:  ( \frac{3}{ \sqrt{3 }  + 1 } )  +( \frac{5}{ \sqrt{3 }  - 1} ) =a+b√3 ,  \: find \:  \:  a \:  \:  and \:  \:  b} \\

ㅤㅤㅤㅤㅤㅤㅤㅤㅤ

 \underline{ \huge \rm{ANSWER :}}

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

 \large  \rm{  ( \frac{3}{ \sqrt{3 }  + 1 } )  +( \frac{5}{ \sqrt{3 }  - 1} ) =a+b√3} \\

ㅤㅤㅤ

 \large  \rm{  (  \frac{3 \times ( \sqrt{3} - 1 )}{ \sqrt{3 }  + 1 \times ( \sqrt{3} - 1 ) }  )  +( \frac{5 \times ( \sqrt{3}  + 1)}{ \sqrt{3 }  - 1 \times ( \sqrt{3}  + 1)} ) =a+b√3 } \\

ㅤㅤㅤ

 \large  \rm{   (\frac{3 \sqrt{3}  - 3}{3 - 1} ) } + ( \frac{5 \sqrt{3} + 5 }{3 - 1} ) = a + b \sqrt{3}  \\

ㅤㅤㅤ

 \large  \rm{   (\frac{3 \sqrt{3}  - 3}{2} ) } + ( \frac{5 \sqrt{3} + 5 }{2} ) = a + b \sqrt{3}  \\

ㅤㅤㅤ

 \large  \rm{ \frac{3 \sqrt{3} - 3 + (5 \sqrt{3} + 5)  }{2} } = a + b \sqrt{3}  \\

ㅤㅤㅤ

 \large  \rm{ \frac{3 \sqrt{3} - 3 + 5 \sqrt{3} + 5  }{2} } = a + b \sqrt{3}  \\

ㅤㅤㅤ

 \large  \rm{ \frac{ 8\sqrt{3}  + 2 }{2} } = a + b \sqrt{3}  \\

ㅤㅤㅤ

 \large  \rm{  \frac{8 \sqrt{3} }{2}  +  \frac{2}{2}  } = a + b \sqrt{3}  \\

ㅤㅤㅤ

 \large  \rm{  4 \sqrt{3}   +  1 } = a + b \sqrt{3}  \\

ㅤㅤㅤ

 \large \rm1 + 4 \sqrt{3}  = a + b \sqrt{3}

ㅤㅤ

 \large \bf{When \:  \:  we \:  \:  compare  \:  \: LHS  \:  \: and  \:  \: RHS , }

ㅤㅤㅤ

 \boxed{ \large \bf{a = 1 \:  ,  \:  \: b = 4}}

ㅤㅤㅤ

 \\  \\ { \bold{Hope \:   \: this \:   \: helps  \: \:  you \: !}}

Similar questions