Math, asked by MythiliHarish, 1 month ago

if (3^3x-1)/9=27 find the value of x​

Answers

Answered by SugarCrash
7

Question :

  • \sf If\: \dfrac{3^{3x-1}}{9} = 27 \:, Find\:the\:value\:of\:x.

Solution:

\longmapsto\dfrac{3^{3x-1}}{9} = 27

Cross multiplying:-

\\\sf\dashrightarrow 3^{3x-1} = 27 \times 9 \\\\ \sf\dashrightarrow 3^{3x-1} = 243 \\\\\sf\dashrightarrow 3^{3x-1} = 3^5

Bases are same , Powers will be taken equal :-

 \sf\longmapsto 3^{3x-1} = 3^5 \\\\ \sf\dashrightarrow 3x-1=5 \\\\\dashrightarrow \sf 3x=5+1 \\\\\dashrightarrow \sf 3x=6 \\\\\dashrightarrow \sf x = \cancel{\dfrac{6}{3}} \\\\\sf \dashrightarrow \underline{\boxed{\pink{\mathfrak x = 2}}}

More to know :

  • \sf a^m\times a^n = a^{m+n}
  • \sf (a^m)^n = a^{mn}
  • \sf a^1 = a
  • \sf a^0 = 1
  • \sf a^{-m}=\frac{1}{a^m}
  • \sf a^{m/n}=\sqrt[m]{a^n} = \sqrt[m]{a}\;^n
  • \sf a^m = a^n \: , then \: m= n
Similar questions