Math, asked by kalpnaraja1906, 2 days ago

if 3× +4y =18 and xy =6 , find the value of 9×2 + 16y2 / 3× + 4Y = 18​

Answers

Answered by PharohX
0

 \sf   \pink{  \underline{\large\: Question.}}

 \sf  \: if  \: \: 3x + 4y = 18 \: and \: xy = 6 \:  then \: find \: the \: value \: of

 \sf \:  {\large \frac{9 {x}^{2} + 16 {y}^{2}  }{3x + 4y}   \: }

 \sf   \green{  \underline{\large\: solution.}}

 \sf \: Given

 \sf \: 3x + 4y = 18

 \sf \: Squaring \:  \:  both \:  \:  sides

 \sf  \implies\: (3x + 4y)^{2}  = (18)^{2}

 \sf  formula \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf\: (a + b)^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

 \sf  \implies\: (3x)^{2} + 2 \times (3x) \times (4y)  + (4y)^{2}  = 324

 \sf  \implies\: 9x^{2} + 24xy  + 16y^{2}  = 324

 \sf  \implies\: 9x^{2} + 16y^{2}  = 324 - 24xy

 \sf \: Aslo \:  \:  given \:  \:  \: xy = 6

 \sf  \implies\: 9x^{2} + 16y^{2}  = 324 - 24 \times 6

 \sf  \implies\: 9x^{2} + 16y^{2}  = 324  - 144

 \sf  \implies\: 9x^{2} + 16y^{2}  =180 \:  \:  \:  \:  \:  \: ....(i)

Hence

 \sf \:  \large \frac{9 {x}^{2} + 16 {y}^{2}  }{3x + 4y}   =  \: \frac{180 }{18}

 \sf \:  {\large \frac{9 {x}^{2} + 16 {y}^{2}  }{3x + 4y}   =  \:} 10 \:  \:  \:  \:  \:  \:  \green{ \: \leftarrow ans}

plz mark as brainlist

Similar questions