Math, asked by vijaymallik0008, 6 months ago

if 3+√5/2√5+3 = a+b√5 find the value of rational number a and b​

Answers

Answered by Anonymous
1

Solution:-

Given

 \rm \implies \dfrac{3 +  \sqrt{5} }{3 + 2 \sqrt{5} }  = a +  b\sqrt{5}

To find tha value of a and b

Now take

 \rm \implies \:  \dfrac{3 +  \sqrt{5} }{3 + 2 \sqrt{5} }

Using rationalization methods

 \rm \implies \:  \dfrac{3 +  \sqrt{5} }{3 + 2 \sqrt{5} }  \times  \dfrac{3 - 2 \sqrt{5} }{3 - 2 \sqrt{5} }

 \rm \implies \:  \dfrac{(3 +  \sqrt{5})(3 - 2 \sqrt{5}  )}{(3 + 2 \sqrt{5})(3 - 2 \sqrt{5}  )}

 \rm \implies \:  \dfrac{3 \times 3 - 3 \times 2 \sqrt{5}  + 3 \times  \sqrt{5}  - 2 \sqrt{5}  \times  \sqrt{5} }{(3) {}^{2} -(2 \sqrt{5})^{2}   }

 \rm \implies \:  \dfrac{9 - 6 \sqrt{5}  + 3 \sqrt{5}  - 10}{9 - 20}

 \rm  \implies \dfrac{ - 1 - 3 \sqrt{5} }{ - 11}

 \rm \implies \:  \dfrac{ - (1 + 3 \sqrt{5}) }{ - 11}

 \rm \implies \:  \dfrac{1}{11}  +  \dfrac{3}{11}  \sqrt{5}

So value of a

\rm \implies \:  a = \dfrac{1}{11}   \: and \:  b = \dfrac{3}{11}

Similar questions