Math, asked by pentelakomali16, 7 months ago

If 3.6h = 1.6k, then find (h-k)/(h+k)

Answers

Answered by pulakmath007
1

SOLUTION

GIVEN

3.6h = 1.6k

TO EVALUATE

\displaystyle \sf{  \frac{h  -  k}{h  + k} }

EVALUATION

Here it is given that

\displaystyle \sf{ 3.6h = 1.6k}

\displaystyle \sf{ \implies  \frac{h}{k}  =  \frac{1.6}{3.6} }

\displaystyle \sf{ \implies  \frac{h}{k}  =  \frac{16}{36} }

\displaystyle \sf{ \implies  \frac{h}{k}  =  \frac{4}{9} }

Now Componendo and Dividendo rule we get

\displaystyle \sf{ \implies  \frac{h + k}{h - k}  =  \frac{4 + 9}{4 - 9} }

\displaystyle \sf{ \implies  \frac{h + k}{h - k}  =  \frac{13}{ - 5} }

\displaystyle \sf{ \implies  \frac{h  -  k}{h  +  k}  =  \frac{ - 5}{ 13} }

\displaystyle \sf{ \implies  \frac{h  -  k}{h  +  k}  =  -  \frac{ 5}{ 13} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Apply the distributive property to create an equivalent expression. 5*(−2w−4)

https://brainly.in/question/33967867

2. Complete the following product (x-3)(x^(2)+3x+9)

https://brainly.in/question/25709643

Answered by marishthangaraj
3

Given:

3.6h =  1.6k

To find :

\frac{h - k}{h + k}

Solution:

Step 1 of 2:

From the given values we get ,

3.6 h = 1.6 k

h  =  \frac{1.6}{3.6} k

h = \frac{1.6}{3.6}× \frac{10}{10} k

h = \frac{16}{36} k

h = \frac{4}{9} k

Step 2 of 2:

On substituting the value of h,

\frac{h - k}{h + k} = \frac{\frac{4}{9} k - k}{\frac{4}{9} k + k}

\frac{h - k}{h + k}  = \frac{\frac{4k - 9 k}{9}  }{\frac{4k + 9k}{9} }

\frac{h - k}{h + k} = {\frac{4k - 9 k}{9} ×  {\frac{9}{4k + 9 k}

\frac{h - k}{h + k} = \frac{-5k}{13k}

\frac{h - k}{h + k} = \frac{-5}{13}

Final answer:

The value of \frac{h - k}{h + k}  is - \frac  {5}{13} .

Similar questions
Math, 3 months ago