Math, asked by vabsvabs68, 11 months ago

if 3 ,7,11....403 is an ap find the sum of the terms​

Answers

Answered by Anonymous
44

\Huge{\underline{\underline{\blue{\mathfrak{Answer :}}}}}

\Large{\sf{Given :}}

A. P :- 3, 7, 11 .......... 403

First term (a) = 3

Common Difference = 4

Last term (L or An) = 403

\rule{200}{2}

\LARGE{\sf{To \: Find  :}}

Sum of all the terms

\rule{200}{2}

\LARGE{\sf{Solution :}}

We know that,

\LARGE{\boxed{\boxed{\green{\tt{A_{n}= a + (n - 1)d}}}}}

(Putting Values)

403 = 3 + (n - 1)4

⇒403 - 3 = (n - 1)4

⇒400 = (n - 1)4

⇒400/4 = n - 1

⇒100 = n - 1

⇒100 + 1 = n

⇒ n = 101

\Large{\boxed{\red{\sf{n = 101}}}}

Now,

\rule{200}{2}

\LARGE{\boxed{\boxed{\green{\tt{S_{n} = \frac{n}{2} (a + L) }}}}}

Sn = 101 * (3 + 403) / 2

⇒Sn = 101 * 406 / 2

⇒ Sn = 101 * 203

⇒ Sn = 20503

\Large{\boxed{\red{\sf{S_{n} = 20503}}}}

Answered by Anonymous
2

Given ,

The given AP is 3 , 7 , 11 , ........ , 403

Here ,

First term (a) = 3

Common difference (d) = 7 - 3 = 4

Nth term or Last term (an or l) = 403

We know that , the nth term of an AP is given by :

 \star  \:  \:  \sf  \underline{\fbox{ \pink{a_{n} = a + (n - 1)d} }}

Substitute the values , we obtain

  \sf\hookrightarrow403 = 3 + (n - 1)4 \\   \\ \sf \hookrightarrow 400 = (n - 1)4 \\  \\ \sf \hookrightarrow 100 = n - 1 \\  \\  \sf\hookrightarrow  n = 101

Now , The sum of the first n terms of an AP is given by :

 \fbox  \green{ \:  \: \star \:  \: } \:  \sf \:  \underline{ \fbox{ \red{ \:  \: S =  \frac{n}{2} (a + l) \:  \: }}}

Again , substitute the values , we obtain

 \sf \hookrightarrow S =  \frac{101}{2} (3 + 403) \\  \\ \sf \hookrightarrow S =  \frac{101}{ \cancel{2}} ( \cancel{406}) \\  \\  \sf \hookrightarrow \sf S = 101 \times 203 \\  \\ \sf \hookrightarrow S = 20503

Therefore , the sum of first 101 terms of given AP is 20503

Similar questions