Math, asked by sakshishakya, 11 months ago

If 3+√7/3-√7=a+b√7, then find the value of “a” and “b”.


Pls ASAP​

Attachments:

Answers

Answered by madhusudhana1308
0

Answer:

May be,a=3 andb=-2|3 by equates both sides

Answered by yogitamishra30
0

Answer:

  \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  = a + b \sqrt{7}  \\  \\  \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }   \times  \frac{3 +  \sqrt{7} }{3  -  \sqrt{7} } = a + b \sqrt{7}  \\   \\   \frac{(3 +  \sqrt{7}) {}^{2}  }{(3) {}^{2}  - ( \sqrt{7}) {}^{2}  }  = a + b \sqrt{7}  \\  \\  \frac{9 + 7 + 3 \sqrt{7} }{9 - 7}  = a + b \sqrt{7}  \\  \\  \frac{16 + 3 \sqrt{7} }{2}  = a + b \sqrt{7}  \\  \\  \frac{16}{2}  +  \frac{3}{2}  \sqrt{7 }  = a + b \sqrt{7}  \\  \\ 8 +  \frac{3}{2}  \sqrt{7}  = a + b \sqrt{7 }  \\  \\ hence \: a = 8 \: and \: b =  \frac{3}{2}

Similar questions