Math, asked by braysonminjabcm, 11 months ago

if 3.7^x=(0.37)^y=1000 show that x^-1-y^-1=3^-1

Answers

Answered by harendrachoubay
2

x^{- 1} + y^{- 1} [/tex]= 3^{- 1}[/tex][/tex], it is proved.

Step-by-step explanation:

Given,

3.7^{x} =[tex]0.37^{y} = 1000</p><p>Consider, [tex]3.7^{x} = 100            ....... (1)

Taking log on both sides in equation (1), we get

x·㏒3.7[/tex] = 3·㏒10[tex]

⇒ x·㏒3.7[/tex] = 3</p><p>⇒ ㏒3.7[tex] = \frac{3}{x}     ....... (2)

Also,

Consider 0.37^{y} = 1000                   <strong>....... (3)</strong></p><p>Taking log on both sides in equation (3), we get</p><p>y·㏒0.37[tex] = 3·㏒10[/tex] </p><p>⇒ y·㏒0.37[tex] = 3

⇒ ㏒0.37[/tex] = [tex]\frac{3}{y}   ....... (4)

Subtracting (4) into (2), we get

㏒3.7[/tex]  - ㏒0.37[tex] = \frac{3}{x}  - \frac{3}{y}

⇒ ㏒10 \frac{3}{x}  - \frac{3}{y}

x^{- 1} + y^{- 1} [/tex]= 3^{- 1}[/tex][/tex], it is proved.

Similar questions