If 3+√73− √7 = a+ b√7, find the values of a and b
Answers
If 3+√7 / 3-√7 = a+b√7 find a and b.
Given:
- We have been given that 3+√7/3-√7 = a+b√7.
To Find:
- We need to find the values of a and b.
Solution:
We have been given that 3+√7/3-√7 = a+b√7.
Inorder to rationalize this, we need yo multiply by 3+√7 in both numerator and denominator.
=> (3+√7)² / (3-√7)(3+√7) = a + b√7
=> (9 + 7 + 6√7) / (3² -√7²) = a + b√7
=> 16+ 6√7 / 9-7 = a + b√7
=> 16+ 6√7 / 2 = a + b√7
=> 2(8 + 3√7) / 2 = a + b√7 [Taking 2 as common]
=> 8 +3√7 = a + b√7
Now, on comparing both sides, we get a = 8 and b = 3.
Therefore, a = 8 and b = 3.
CORRECT QUESTION:
If 3 + √7/3 - √7 = a + b√7, then find a , b
GIVEN:
- 3 + √7/3 - √7 = a + b√7
TO FIND:
- a , b
SOLUTION:
3 + √7/3 - √7 = a + b√7
Taking LHS & rationalising the denominator
(3 + √7)(3 + √7)/(3 + √7)(3 - √7)
Using
• (a + b)² = a² + 2ab + b²
• (a + b)(a - b) = a² - b²
→ 3² + 6√7 + (√7)²/3² - (√7)²
→ 16 + 6√7/2
Taking common
→ 2(8 + 3√7)/2
→ 8 + 3√7
Now, comparing with RHS
8 + 3√7 = a + b√7
a = 8 , b = 3