If 3+√8 by 3-√8 plus 3-√8by 3+ √8=a+b√2
Answers
Answered by
0
Solution:
Given
LHS =
[(3+√8)/(3-√8)]+[(3-√8)/(3+√8)]
= [(3+√8)²+(3-√8)²]/[(3-√8)(3+√8)]
= {2[3²+(√8)²]}/[3²-(√8)²]
/* we know the algebraic identity:
i) (a+b)²+(a-b)² = 2(a²+b²)
ii)(a+b)(a-b) = a²-b² */
= [2(9+8)]/(9-8)
= (2×17)/1
= 34
Now ,
LHS = RHS
=> 34 = a+b√2 [given ]
=> 34 + 0×√2 = a+b√2
Compare both sides , we get
=> a = 34 , b = 0
••••
Similar questions