English, asked by dreamgirl6984, 10 months ago

.If = (3 + √8) then find the value of
 {x}^{2}   +    \frac{1}{ {x}^{2} }

Answers

Answered by TheFairyTale
5

 \boxed{AnswEr}

 \sf  \ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34

GivEn :-

  •  \sf \:  x = (3 +  \sqrt{8} )

To Find :-

  •  \sf \: The \:  Value \:  of \:  x^2 +   \frac{1}{ {x}^{2} }

 \boxed{Solution}

1st Step :

 \sf \: x = (3 +  \sqrt{8} ) \\    \sf \: or \: \:  \:  \:  \:   \frac{1}{x}  =  \frac{1}{(3 +  \sqrt{8} )}  \\  \sf \: or \:  \: \:    \frac{1}{x}  =  \frac{(3 -  \sqrt{8} )}{(3 +  \sqrt{8)}(3 -  \sqrt{8} ) }  \\  \sf \: or \:  \:  \frac{1}{x}  =  \frac{(3 -  \sqrt{8} )}{(9 - 8)}  = (3 -  \sqrt{8)}

2nd Step :

 \sf \: x  +  \frac{1}{x}  \\  \sf \:  = (3 +  \sqrt{8} ) + (3 -  \sqrt{8} ) \\   \sf \:  = 3 + \sqrt{8}   + 3 -  \sqrt{8}  = 6

3rd Step :

 \sf \:  {x}^{2}   +  \frac{1}{ {x}^{2} }  \\  =  \sf \: (x +  \frac{1}{x} )^{2}  - 2 \times x \times  \frac{1}{x}  \\  \sf \:  =  {6}^{2}  - 2 = 36 - 2 = 34

 \sf \therefore \: The  \: answer \:  is  \:  34

Answered by mehtamanas139
0

Answer:

34

hope it's helpful . . .

mark me as brainliest . . .

Similar questions