Math, asked by dj4504936, 3 months ago

If ( 3^9*3^-5)^x=27 then x=?​

Answers

Answered by vijaykumar9984078984
4

Answer:

{( {3}^{9}  \times  {3}^{ - 5} ) }^{x}  = 27 \\ ( {3}^{9 - 5} ) {}^{x}  = 27 \\ ( {3}^{4} ) {}^{x}  =  {3}^{3} \\  {3}^{4x}   =  {3}^{3}  \\ 4x = 3 \\ x =  \frac{3}{4}

Answered by hemanthvadapalli123
0

Question:-

if \:  {( {3}^{9} \times  {3}^{ - 5}  )}^{x}  = 27 \:  \: then \:  \: x =

Useful formulae:-

 {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 {( {a}^{m} )}^{n}  =  {a}^{mn}

Solution:-

First Simplify

 {3}^{9}  \times  {3}^{ - 5}  =  {3}^{9 + ( - 5)}

 =  >  {3}^{9 - 5}

 =  >  {3}^{4}

Then,

 ({ {3}^{4}) }^{x}  = 27

27 can be written as 3³

So,

 {3}^{4x}  =  {3}^{3}

Bases are equal.So, powers also equal

So,

4x = 3

x =  \frac{3}{4}

Similar questions