Math, asked by swaibsneha21gmailcom, 1 year ago

if 3 A + 5b + 4 C = 0 , prove that: 27 a^ cube + 125 b ^cube + 64 C^ cube equals to 180 ABC​

Answers

Answered by Anonymous
31

By using the formula ,

a3+ b3+ c3= 3abc, where a+b+c= 0.

then,

(3a)3+ (5b)3 +(4c)3 = 3*3a*5b*4c

= 27a3 + 125b3+ 64c3= 180abc

Hence proved.


swaibsneha21gmailcom: bakkkkk
swaibsneha21gmailcom: situp
Answered by JeanaShupp
4

Here we use Identity  :

If x+y+z=0 , then x^3+y^3+z^3=3xyz  

Step-by-step explanation:

Identity in polynomials :

If x+y+z=0 , then x^3+y^3+z^3=3xyz   (1)

To prove : 27 a^3 + 125 b ^3 + 64 c^3=180abc

Consider L.H.S. 27 a^3 + 125 b ^3 + 64 c^3

= =3^3a^3+5^3b^3+4^3c^3

= (3a)^2+(5b)^3+(4c)^3

Since , it is given that 3 a + 5b + 4 c = 0 m, so by using (1) , we get

= (3a)^2+(5b)^3+(4c)^3= 3(3a)(5b)(4c)= 180abc  = R.H.S.

Hence, proved.

# Learn more :

Prove that (a+b)cube+(b+c)cube+(c+a)cube-3(a+b)×(b+c)×(c+a)=2(acube+bcube+ccube)

https://brainly.in/question/8922056

Similar questions