Math, asked by BrainlyHelper, 1 year ago

If 3 cos θ − 4 sin θ = 2 cos θ + sin θ, find tan θ.

Answers

Answered by nikitasingh79
12

SOLUTION :  

Given: 3 cosθ–4 sin θ = 2 cos θ + sin θ

3 cos θ - 4 sin θ = 2 cosθ+sinθ

3cos θ - 2 cosbθ = sinθ + 4 sinθ

cos θ = 5 sinθ

[Dividing both the sides by cos θ]

cos θ/cosθ = 5 sinθ /cosΘ

1 = 5 tan θ

[sinθ /cosΘ = tan Θ]

tan θ =1/5

Hence,  tan θ=1/5

HOPE THIS ANSWER WILL HELP YOU…

Answered by Ashishkumar098
11
Answer :-


_________________________


Given :-

3 cos θ − 4 sin θ = 2 cos θ + sin θ


To find :-

The value of tan θ


Salutation :-

3 cos θ − 4 sin θ = 2 cos θ + sin θ

3 cos θ - 2 cos θ = sin θ + 4sin θ

cos θ = 5 sin θ

sin θ / cos θ = 1 / 5

tan θ = 1 / 5

•°• The value of tan θ is 1 / 5.

___________________________
Similar questions