If 3 cos θ − 4 sin θ = 2 cos θ + sin θ, find tan θ.
Answers
Answered by
12
SOLUTION :
Given: 3 cosθ–4 sin θ = 2 cos θ + sin θ
3 cos θ - 4 sin θ = 2 cosθ+sinθ
3cos θ - 2 cosbθ = sinθ + 4 sinθ
cos θ = 5 sinθ
[Dividing both the sides by cos θ]
cos θ/cosθ = 5 sinθ /cosΘ
1 = 5 tan θ
[sinθ /cosΘ = tan Θ]
tan θ =1/5
Hence, tan θ=1/5
HOPE THIS ANSWER WILL HELP YOU…
Answered by
11
Answer :-
_________________________
Given :-
3 cos θ − 4 sin θ = 2 cos θ + sin θ
To find :-
The value of tan θ
Salutation :-
3 cos θ − 4 sin θ = 2 cos θ + sin θ
3 cos θ - 2 cos θ = sin θ + 4sin θ
cos θ = 5 sin θ
sin θ / cos θ = 1 / 5
tan θ = 1 / 5
•°• The value of tan θ is 1 / 5.
___________________________
_________________________
Given :-
3 cos θ − 4 sin θ = 2 cos θ + sin θ
To find :-
The value of tan θ
Salutation :-
3 cos θ − 4 sin θ = 2 cos θ + sin θ
3 cos θ - 2 cos θ = sin θ + 4sin θ
cos θ = 5 sin θ
sin θ / cos θ = 1 / 5
tan θ = 1 / 5
•°• The value of tan θ is 1 / 5.
___________________________
Similar questions
Math,
7 months ago
Science,
7 months ago
English,
7 months ago
Accountancy,
1 year ago
English,
1 year ago