Math, asked by ashu62045, 1 year ago

if 3 cos squared theta + 7 sin squared theta is equal to 4 show that cot theta is equal to underroot3

Answers

Answered by chopraneetu
1

 { 3\cos }^{2}  \theta + 7 { \sin}^{2}   \theta = 4 \\   { 3\cos }^{2}  \theta + 3 { \sin}^{2}   \theta  + 4{ \sin}^{2}   \theta = 4 \\ 3( {\cos }^{2}  \theta +{ \sin}^{2}   \theta) + 4{ \sin}^{2}   \theta = 4 \\ 3 \times 1 + 4{ \sin}^{2}   \theta = 4 \\ 3 + 4{ \sin}^{2}   \theta = 4 \\ 4{ \sin}^{2}   \theta = 4 - 3 = 1 \\ { \sin}^{2}   \theta =  \frac{1}{4}  \\ { \sin}\theta =   \sqrt{ \frac{1}{4} }  =  \frac{1}{2}  \\  \cos \theta =  \sqrt{1 -  { \sin }^{2}  \theta}  =  \sqrt{1 -  { (\frac{1}{2} })^{2} }  \\  \cos \theta =  \sqrt{1 -  \frac{1}{4} }  =  \sqrt{ \frac{3}{4} }  =  \frac{ \sqrt{3} }{2}  \\ now \\  \cot\theta =  \frac{ \cos  \theta} { \sin\theta }=  \frac{ \frac{ \sqrt{3} }{2} } { \frac{1}{2} } \\  \cot  \theta =  \sqrt{3}
Similar questions