Math, asked by hbisht697, 10 months ago

If 3 cos theta = underoot 3 , prove that 3 sin theta - 4 sin^3 theta = 1.

Answers

Answered by mysticd
9

Answer:

 3sin\theta-4sin^{3}\theta=\frac{\sqrt{2}}{3\sqrt{3}}

Step-by-step explanation:

 Given\:3cos\theta=\sqrt{3}

\implies cos\theta=\frac{\sqrt{3}}{3}\\=\frac{1}{\sqrt{3}}\:---(1)

sin^{2}\theta=1-cos^{2}\theta\\=1-\left(\frac{1}{\sqrt{3}}\right)^{2}\\=1-\frac{1}{3}\\=\frac{3-1}{3}\\=\frac{2}{3}\:--(2)

\implies sin\theta = \sqrt{\frac{2}{3}}\:--(3)

Now, 3sin\theta-4sin^{3}\theta\\=3\times \sqrt{\frac{2}{3}}-4\times \left(\sqrt{\frac{2}{3}}\right)^{3}\\=\frac{3\sqrt{2}}{\sqrt{3}}-\frac{8\sqrt{2}}{3\sqrt{3}}\\=\frac{9\sqrt{2}-8\sqrt{2}}{3\sqrt{3}}\\=\frac{\sqrt{2}}{3\sqrt{3}}

Therefore,

 3sin\theta-4sin^{3}\theta=\frac{\sqrt{2}}{3\sqrt{3}}

•••♪

Answered by Anonymous
14

\huge{\mathfrak{\underline{\underline{\red{Answer :-}}}}}

\huge{\boxed{\boxed{\pink{\frac{\sqrt{2}}{ 3\sqrt{3}}}}}}

\huge{\mathfrak{\blue{Explanation}}}

Given :-

\sf{3cos{\theta} = {\sqrt3}}

\bf{cos{\theta} = \frac{\sqrt3}{3}}

\bf{cos{\theta} = \frac{1}{\sqrt3}}

Let this be equation 2.

To Prove :-

\sf{\large{3sin{\theta} - 4sin^{3}{\theta} = 1}}

Let this be equation 1

Solution :-

Using Formula

\huge{\boxed{\boxed{\red{sin^{2}{\theta} = 1 - cos^{2}{\theta}}}}}

___________[Put values]

\sf{sin^{2}{\theta} = 1 -  ({ \frac{1}{{\sqrt3}} ) }^{2}}

\sf{sin^{2}{\theta} = 1 - \frac{1}{3}}

Taking LCM

\sf{sin^{2}{\theta} = \frac{3 - 1}{3}}

\sf{sin^{2}{\theta} = \frac{2}{3}}

\bf{sin{\theta} =  ({ \sqrt{ \frac{2}{3} } )}}

Let this be equation 3

\rule{200}{2}

__________[Put Values in equation 1]

\sf{3 \times  \sqrt{ \frac{2}{3} }    \times  - 4 \times   ({ \sqrt{ \frac{2}{3} } )}^{3}}

\sf{ \frac{ 3\sqrt{2} }{\sqrt{3} }  -   \frac{ 8\sqrt{2} }{3\sqrt{3}}}

Taking LCM

\sf{\large{ \frac{ 9\sqrt{2} -  8\sqrt{2}  }{3 \sqrt{3}}}}

\bf{\large{ \frac{ \sqrt{2} }{ 3\sqrt{3}}}}

\huge{\boxed{\boxed{\red{\frac{\sqrt{2}}{ 3\sqrt{3}}}}}}

Similar questions