If 3 cos2A - sinA = 2, A belongs to [-pie/2 , pie/2]. find A
Answers
Answered by
0
Answer:
1/3
Step-by-step explanation:
3(1-2sin^2 A) - sin A = 2 ( cos 2A = 1-2sin^2 A)
3 - 6 sin^2 A - sin A - 2 = 0
6sin^2 A + sin A -1 = 0
put sin A = x
then
6x^2 + x -1 =0
6x^2 +3x-2z -1=0
3x(2x+1)-1(2x+1)=0
(3x-1)(2x+1)=0
3x-1=0. or 2x+1=0
x=1/3 or x= -1/2
then sin A = 1/3 or Sin A = -1/2
given that A lines in 1st quardent
sin A = 1/3 or Sin A = -1/2
A = -sin ^-1 (1/2)
A = - sin^-1 ( sin pie/6)
A = - pie/6
Similar questions