If 3 cot θ = 4, find the value of.
Answers
Answered by
6
SOLUTION :
Given : 3 cot θ = 4
We have to find the value of : (4 cos θ - sin θ)/(2cos θ + sin θ)
In right angle ∆,
cot θ = Base / perpendicular
cos θ = Base/ hypotenuse
sin θ = perpendicular/hypotenuse
3 cot θ = 4
cot θ = 4 /3 = Base / perpendicular
Hypotenuse = √( perpendicular)² + (Base)²
[By Pythagoras theorem]
Hypotenuse = √ 3² + 4² = √9 + 16 = √25
Hypotenuse = √25 = 5
Hypotenuse = 5
cos θ = Base/ hypotenuse = ⅘
cos θ = ⅘
sin θ = perpendicular/hypotenuse = ⅗
sin θ = 3/5
The value of : (4 cos θ - sin θ)/(2cos θ + sin θ)
= (4 × ⅘ - ⅗) /(2 × ⅘ + ⅗)
= (16/5 - ⅗) / (8/5 + ⅗)
= (16 - 3)/5 / (8 + 3)/5
= (13/5) / (11/5)
= 13/5 × 5/11
(4 cos θ - sin θ)/(2cos θ + sin θ) = 13/11
Hence, the value of (4 cos θ - sin θ)/(2cos θ + sin θ) is 13/11 .
HOPE THIS ANSWER WILL HELP YOU…
Answered by
8
cot x =4/3
i.e cos x /sin x = 4/3
cos x = 4/3 sin x
substituting cos x = 4/3 sin x in given equation we get ,
(16/3 sin x - sin x )/(8/3 sin x + sin x )
=(13/3 sin x )/(11/3 sin x )
=13/11
i.e cos x /sin x = 4/3
cos x = 4/3 sin x
substituting cos x = 4/3 sin x in given equation we get ,
(16/3 sin x - sin x )/(8/3 sin x + sin x )
=(13/3 sin x )/(11/3 sin x )
=13/11
Similar questions