Math, asked by trupti2786, 9 hours ago

if 3 cot Φ=4 then find the value of sinΦ, cosecΦ, secΦ, cosΦ,and tanΦ​

Answers

Answered by kp59362812
1

Answer:

I am using

\alpha \: \: instead \: \: of \: thetaαinsteadoftheta

\cot( \alpha ) = \frac{4}{3}cot(α)=

3

4

then

\tan( \alpha ) = \frac{3}{4}tan(α)=

4

3

\sin( \alpha ) + \cos( \alpha )sin(α)+cos(α)

divided above eq by

\cos( \alpha )cos(α)

we get

\binom{ \sin( \alpha + \cos( \alpha ) }{ \cos( \alpha ) }(

cos(α)

sin(α+cos(α)

)

\binom{ \sin( \alpha ) } < br / > < br / > < br / > < br / > < br / > < br / > { \cos( \alpha ) } + \binom{ \cos( \alpha ) }{ \cos( \alpha ) }(

<

sin(α)

)br/><br/><br/><br/><br/><br/>cos(α)+(

cos(α)

cos(α)

)

=>

\tan( \alpha ) + 1tan(α)+1

=>

\frac{3}{4} + 1

4

3

+1

=>

\frac{7}{4}

4

7

Answered by nikhilreddyaireddy
1

Answer:

Step-by-step explanation:

Attachments:
Similar questions