if 3 cot Φ=4 then find the value of sinΦ, cosecΦ, secΦ, cosΦ,and tanΦ
Answers
Answered by
1
Answer:
I am using
\alpha \: \: instead \: \: of \: thetaαinsteadoftheta
\cot( \alpha ) = \frac{4}{3}cot(α)=
3
4
then
\tan( \alpha ) = \frac{3}{4}tan(α)=
4
3
\sin( \alpha ) + \cos( \alpha )sin(α)+cos(α)
divided above eq by
\cos( \alpha )cos(α)
we get
\binom{ \sin( \alpha + \cos( \alpha ) }{ \cos( \alpha ) }(
cos(α)
sin(α+cos(α)
)
\binom{ \sin( \alpha ) } < br / > < br / > < br / > < br / > < br / > < br / > { \cos( \alpha ) } + \binom{ \cos( \alpha ) }{ \cos( \alpha ) }(
<
sin(α)
)br/><br/><br/><br/><br/><br/>cos(α)+(
cos(α)
cos(α)
)
=>
\tan( \alpha ) + 1tan(α)+1
=>
\frac{3}{4} + 1
4
3
+1
=>
\frac{7}{4}
4
7
Answered by
1
Answer:
Step-by-step explanation:
Attachments:
Similar questions