Math, asked by sudhanshu3371, 1 year ago

If 3 cot A = 4, check whether 1-tan^2 A/1+tan^2 A=cos^2 A -sin^2 A or not.

Answers

Answered by yash9219
149
this may help you my friend.
Attachments:
Answered by hukam0685
137

Answer:

yes,LHS=RHS

Step-by-step explanation:

If 3 cot A = 4,

cot \: A =  \frac{4}{3}  \\  \\ tan \: A =  \frac{3}{4}  \\  \\

LHS

 \frac{1 -  {tan}^{2} A}{1 +  {tan}^{2} A}  \\  \\  = \frac{1 -  ({ \frac{3}{4}) }^{2} }{1 +(  { \frac{3}{4} })^{2} }  \\ \\  = \frac{1 -  ({ \frac{9}{16}) } }{1 +(  { \frac{9}{16} }) } \\  \\  =  \frac{16 - 9}{16 + 9}  \\  \\  =  \frac{7}{25}  \\  \\

If tan A= 3/4

then sin A=3/5 (from trigonometric functions)

cos A= 4/5

So,apply these values in RHS

 {cos}^{2} A  -  {sin}^{2} A \\  \\  =  ({ \frac{4}{5} })^{2}  - ( { \frac{3}{5} })^{2}  \\  \\  =  \frac{16}{25}  -  \frac{9}{25}  \\  \\  =\frac{16 - 9}{25}  \\  \\  =  \frac{7}{25}  \\  \\

Hence RHS= LHS

yes,for the given value both LHS =RHS

Hope it helps you.

Similar questions