Math, asked by angel7521, 8 months ago

if 3 cot A = 4, check whether
1 - tan" A
1 + tan-A
= cos A-sin A or not.​

Answers

Answered by indiankrishna24
1

Answer:

Given 3 cotA = 4.

cotA = 4/3. ----------------- (1).

We know that tan theta = 1/cot theta

tan A = 1/cotA

= 1/4/3

= 3/4. --------------- (2)

We know that cosec^2 theta = 1 + cot^2 theta

= 1 + (4/3)^2

= 1 + 16/9

= 25/9.

cosec theta = 5/3. ---------------- (3)

We know that cosec theta = 1/sin theta

(5/3) = 1/sin theta

5sin theta = 3

sin theta = 3/5 ------------- (4)

We know that cos^2 theta = 1 - sin^2 theta

= 1 - (3/5)^2

= 1 - 9/25

= 25 - 9/25

= 16/25

cos A = 4/5. ------------- (5)

Now, LHS:

\frac{1 - tan^2A}{1 + tan^2A}

1+tan

2

A

1−tan

2

A

\frac{1 - (\frac{3}{4})^2 }{1 + ( \frac{3}{4})^2 }

1+(

4

3

)

2

1−(

4

3

)

2

\frac{1 - \frac{9}{16} }{1 + \frac{9}{16} }

1+

16

9

1−

16

9

\frac{16 - 9}{16 + 9}

16+9

16−9

\frac{7}{25}

25

7

.

Now, RHS: (4)&(5)

cos^2A - sin^2Acos

2

A−sin

2

A

( \frac{4}{5})^2 - ( \frac{3}{5} )^2(

5

4

)

2

−(

5

3

)

2

\frac{16}{25} - \frac{9}{25}

25

16

25

9

\frac{16-9}{25}

25

16−9

\frac{7}{25}

25

7

LHS = RHS

Similar questions