Math, asked by sachin92071km, 5 months ago

if 3 cot A = 4 , check whether 1 - Tan2 A / 1 + Tan2 A = cos2 A - sin2 A or not​


sachin92071km: any body can help to solve this question ?

Answers

Answered by Intelligentcat
50

Given :-

  • If \bf{3cot A = 4} , check whether \bf{\dfrac{1 -Tan^{2}A}{1 +Tan^{2}A} = Cos^{2}A - Sin^{2}A} or not.

Find :-

\longrightarrow \sf{Prove :}

:\implies \bf{\dfrac{1 -Tan^{2}A}{1 +Tan^{2}A} = Cos^{2}A - Sin^{2}A} \\ \\ \\

Solution -

As we know ,

  • :\implies \bf{CotA = \dfrac{Base}{Perpendicular}}\\

  • \longmapsto{3cot A = 4}\\ \\
  • \longmapsto{cot A = \dfrac{4}{3}}

Let we consider sides be in ratio " k "

\longmapsto{cot A = \dfrac{4k}{3k}}

Where,

  • Base → 4k

  • Perpendicular → 3k

For Hypotenuse :

By using Pythagoras Theorem -

:\implies \bf{Hypotenuse^{2} = Base^{2} + Perpendicular^{2}} \\ \\ \\

:\implies \bf{AC^{2} = AB^{2} + BC^{2}} \\ \\ \\

:\implies \bf{AC^{2} = (4k)^{2} + (3k)^{2}} \\ \\ \\

:\implies \bf{AC^{2} = 16k^{2} + 9k^{2}} \\ \\ \\

:\implies \bf{AC^{2} = 25k^{2}} \\ \\ \\

:\implies \bf{AC = 5k} \\ \\ \\

Let's find out other Ratios now,

⠀⠀⠀⠀⠀For sin A :

:\implies \bf{SinA = \dfrac{Perpendicular}{Hypotenuse}}\\ \\

:\implies \sf{SinA = \dfrac{BC}{AC}}\\ \\

:\implies \sf{SinA = \dfrac{3k}{5k}}\\ \\

:\implies \bf{SinA = \dfrac{3}{5}}\\ \\ \\

⠀⠀⠀⠀⠀For Cos A :

:\implies \bf{CosA = \dfrac{Base}{Hypotenuse}}\\ \\

:\implies \sf{CosA = \dfrac{AB}{AC}}\\ \\

:\implies \sf{CosA = \dfrac{4k}{5k}}\\ \\

:\implies \bf{CosA = \dfrac{4}{5}}\\ \\ \\

⠀⠀⠀⠀⠀For Tan A :

:\implies \bf{TanA = \dfrac{Perpendicular}{Base}}\\ \\

:\implies \sf{TanA = \dfrac{BC}{AB}}\\ \\

:\implies \sf{TanA = \dfrac{3k}{4k}}\\ \\

:\implies \bf{TanA = \dfrac{3}{4}}\\ \\ \\

Proof :

For LHS ➤

We know :-

  • :\implies \bf{CotA = \dfrac{Base}{Perpendicular}}\\ \\
  • :\implies \bf{SinA = \dfrac{3}{5}}\\ \\
  • :\implies \bf{CosA = \dfrac{4}{5}}\\ \\
  • :\implies \bf{TanA = \dfrac{3}{4}} \\ \\

Then, Substituting the respective values , we get :

:\implies \bf{\dfrac{1-tan^{2}A}{1+tan{2}^A}} \\ \\ \\

:\implies \bf{\bigg (1 - \dfrac{3}{4}\bigg)^{2}  \div \bigg (1 + \dfrac{3}{4}\bigg)^{2}} \\ \\

:\implies \bf{\bigg (\dfrac{16 - 9}{16}\bigg) \div \bigg(\dfrac{16 + 9}{16}\bigg)} \\ \\

:\implies \sf{ \dfrac{7}{16} \div \dfrac{25}{16}}\\ \\

By reciprocal -

:\implies \sf{ \dfrac{7}{16} \times \dfrac{16}{25}}\\ \\

:\implies \bf{ \dfrac{7}{25}}\\ \\

And RHS :-

Again, Putting the Values ,

:\implies \bf{Cos^{2}A - Sin^{2}A} \\ \\ \\

:\implies \bf{\bigg(\dfrac{4}{5}\bigg)^{2} - \bigg(\dfrac{3}{5}\bigg)^{2}} \\ \\

:\implies \sf{ \dfrac{16}{25} - \dfrac{9}{25}}\\ \\

:\implies \bf{ \dfrac{7}{25}}\\ \\

:\implies \sf{ \dfrac{7}{25} = \dfrac{7}{25}}\\ \\

L.H.S = R.HS

Hence,

Proved !!

______________________


Anonymous: Splendid :) ♥️
Intelligentcat: Thankaa :D
Anonymous: Noiceee !! ^_^
Intelligentcat: Thankiess ^-^
Anonymous: Welcome :damñ_excited: :bhooot:
Similar questions