Math, asked by Amitkalwa7180, 10 months ago

If 3 cot A = 4, check whether (1 – tan²A)/(1 + tan²A) = (cos²A — sin²A) or not.

Answers

Answered by bestwriters
17

Step-by-step explanation:

From question the condition given is:

\bold{3 \cot A = 4}

\bold{\cot A=\frac{4}{3}}

\bold{\Rightarrow \tan A=\frac{3}{4}}

LHS:

\bold{\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\frac{1-\left(\frac{3}{4}\right)^{2}}{1+\left(\frac{3}{4}\right)^{2}}}

\bold{\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}}

\bold{\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\frac{\frac{16-9}{16}}{\frac{16-9}{16}}}

\bold{\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\frac{7 / 16}{25 / 16}}

\bold{\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\frac{7}{16} \times \frac{16}{25}}

\bold{\therefore \frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\frac{7}{25}}

Now, RHS:

\bold{\sin A=\frac{\text { Opposite side }}{\text { Hypotenuse }}}

\bold{\cos A= \frac{\text { Adjacent side }}{\text { Hypotenuse }}}

\bold{\tan A=\frac{\text { Opposite side }}{\text { Adjacent side }}}

\bold{Hypotenus = \sqrt{(Opposite \ side)^2+(Adjacent \ side)^2}}

\bold{Hypotenus = \sqrt{(3)^2+(4)^2}}

\bold{Hypotenus = \sqrt{9+16} = \sqrt{25}=5}

\bold{\therefore \sin A=\frac{3}{5}}

\bold{\therefore \cos A=\frac{4}{5}}

\bold{\cos ^{2} A-\sin ^{2} A=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}}

\bold{\cos ^{2} A-\sin ^{2} A=\frac{16}{25}-\frac{9}{25}}

\bold{\therefore \cos ^{2} A-\sin ^{2} A=\frac{7}{25}}

Thus,

\bold{\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A}

Hence proved.

Attachments:
Answered by Anonymous
5

Answer

hey mate your answer is in attachment...

Step by step explanation.

Hope it helps!☺️

Attachments:
Similar questions